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ABSTRACT 

The Republic of Korea Army conducts simulations during peacetime using ground operation resource 

requirements analysis model (GORRAM) to determine potential losses when at war based on the latest 

operation plan. Although war-game simulation can yield reliable results, it takes considerable amount of 

time and effort to build a database and generate scenarios. Therefore, a study is required to supplement 

the detailed war-game simulation method to quickly determine expected losses. Using data built-in 

GORRAM, we tested the significance of four factors using beta regression analysis. While multiple 

regression is most commonly used to model the causality, beta regression is a powerful method for 

modeling response variables in the (0,1) range, such as the loss ratio. We verified that three factors, 

namely ‘topography’, ‘operational posture’, and ‘friend/foe power ratio’ were related to loss. This study 

proposes a new method for calculating the expected loss in real-time, overcoming a limitation of existing 

war-game simulation methods.
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Ⅰ. INTRODUCTION

It is important to predict the outcome of a battle in wartime and to prepare resources, such 

as personnel, equipment, fuel, and ammunition, based on the predicted results. Recently, Ukraine 

did not fully reserve the artillery ammunition required for the war, therefore they could not 

respond effectively to Russia’s attacks. The Center for Army Analysis and Simulations (CAAS) 

has been analyzing wartime resource requirements since the 1980s. The analysis of wartime 

resource requirements is conducted periodically whenever the operation plan and environment 

are changed. CAAS conducted the analysis using the ground operation resource requirements 

analysis model (GORRAM) developed in 2010. Using this model, we analyzed the war-time 

resource requirements of personnel, equipment, fuel, ammunition, repair parts, and materials. 

The results of wartime resource requirement analysis (WRRA) are used as the basis for writing 

various war documents related to inventory requirements and military force, such as the joint 

strategic objective plan (JSOP) and oil war stockpile documents, according to the directive of 

the Korea Ministry of Defense. Although war-game simulation can provide relatively reliable 

results (De Lima Filho et al., 2022; Mittal & Davidson, 2020; Turnitsa, Blais, & Tolk, 2021), it 

is impossible to provide the results of judging the expected loss after simulating the war-game 

within a short period of time (e.g., Brathen, Seehuus, & Mevassvik, 2021; Hujer, Kratky, & 

Farlik, 2020).

During the recent combined command post-training (CCPT), we analyzed the expected loss 

reflecting the operational environment within a short period of time. This demand is a great 

challenge. This is because it takes several weeks to simulate a changed operating environment 

using war-game simulation. Therefore, a study is required to supplement detailed war-game 

simulation methods and to quickly determine expected losses by reflecting real-time changes in 

battlefield situations during war and CCPT. The purpose of present study is to develop a 

standard loss analysis model to overcome the limitations of the existing war game model, using 

a regression equation to predict the loss of equipment and troops. The three areas of focus in 

the standard loss analysis model are as follows. 

First, we verified which factors were related to the loss of personnel and equipment in 

previous studies and documents using statistical techniques, such as topography, operational 

posture, and force ratio. Second, we calculated the regression formula for loss to predict the loss 

of personnel and equipment based on the war-game simulation data accumulated in GORRM. 

Finally, we developed a program that could be used during wartime and CCPT. The statistical 
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method used in this study was a beta regression model. The beta regression model is a type 

of generalized linear regression and is a method for exploring the causal relationship between 

response variables from 0 to 1, such as ratio and interval, and explanatory variables. 

Considerable number of studies have been published on the application and theory of beta 

regression since Ferrari and Cribari-Neto (2004) proposed generalized linear models. For 

instance, standardized residuals of beta (Espinheira, Ferrari, & Cribari-Neto, 2008), improved 

methodologies (e.g., mixed and longitudinal models) for beta regression (i.e., Figueroa-Zúñiga, 

Arellano-Valle, & Ferrari, 2013; Hunger, Döring, & Holle, 2012; Ospina & Ferrari, 2012; Schmid 

et al., 2013; Simas, Barreto-Souza, & Rocha, 2010), and application case for beta regression in 

the natural sciences (Geissinger et al., 2022).

The remainder of this paper is organized as follows. Section 2 briefly introduces the force 

scoring mechanisms, including the background of the standard loss analysis model in the ROK 

Army. In section 3, we provide the estimated regression coefficients using the beta regression 

method. Section 4 verifies the regression results of the standard loss-analysis model. The 

development, configuration, and verification of standard loss-analysis model is explained in 

Section 5. Finally, we conclude this paper with a brief summary and discuss future work in 

Section 6. The approximate analytical procedures are presented in Table 1.

Step Contents

1 Literature study on loss influencing factors 

2 Verification of loss influencing factors by beta-regression

3 Development of the standard loss analysis model 

4 Verification of the standard loss analysis model

<Table 1> Analysis procedure

Ⅱ. PREVIOUS RESEARCH

Several force scoring mechanisms exist, such as the weapon effectiveness index/weighted 

unit value (WEI/WUV), division equivalent firepower (DEF), tactical numerical deterministic 

model (TNMD). For more details, please refer to Allen. The Dupuy Institute developed TNDM 

to quantify combat outcome trends (Dupuy et al., 2011). TNDM is an empirically based combat 

model with a database derived from historical research. More than 200 examples of 20th century 
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combat, mostly World War II, and the 1967 and 1973 Arab-Israeli Wars. They extrapolated 

historical trends to combat the development and changes in firepower and mobility technologies. 

This methodology had some limitations, primarily owing to the lack of accounting for 

situation-dependent combined arm effects. To overcome this limitation, research and 

development (RAND), which was founded as an American nonprofit global policy think tank in 

1948, developed the situational force scoring (SFS) methodology (Allen, 1992). The SFS was 

developed to improve the representation of ground force close combat and to provide an 

alternative extrapolation mechanism for use in the more detailed weapon-on-weapon model. The 

SFS can calculate the advanced and loss rates of personnel and equipment. The SFS consists 

of three steps: varying the strength of each category of weapons, modifying category multipliers 

to account for shortages in the combined arms mix, and calculating combat outcomes.

The ROK Army developed a predictive model called the future operation prediction model to 

calculate the advanced rate and loss rate in 1997. This model was developed based on a TNDM 

and SFS methodology. None of the previous studies reflected the operating environment of the 

Korean Peninsula, South Korea’s military doctrine, or various weapon systems. These damage 

assessment methods that simply use the weapon’s effectiveness index can be problematic in 

terms of accuracy. Most importantly, it does not show the factors related to combat loss of 

personnel and equipment. Here, we verified the factors, namely, topography, operational posture, 

and others. A regression formula was extracted to predict the loss rate. Finally, we developed 

a standard loss analysis model to overcome the limitations of the existing war game model. 

Ⅲ. VERIFYING THE FACTORS OF LOSS RATE 

3.1 Definition of terms and factors effect 

Prior to verifying the loss factors, we define terms related to the loss. The operational posture 

is the form of operation for the performance of the attacker and the defender’s planned missions. 

The force ratio of friend and foe is the difference in the ratio between the ally’s and opponent’s 

military force, based on the power index. The operational tempo is the relative operational speed 

of the enemy. Here are the loss factors and their effects based on previous research including 

‘How to make war: A comprehensive guide to modern warfare’, etc. (Dunnigan, 2003). Existing 

studies, such as ‘How to make war,’ divided the loss influencing factors into operational, 
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environmental, and intangible factors and presented them, as listed in Table 2. These loss 

factors, which are listed in Table 2, were verified using statistical methods. For reference, the 

number in parentheses for each loss factor indicates the degree of impact on the loss. 

Operational factors

(effects)  

Environment factors

(effects)  
Intangible power factors 

Unit size (50–200%) Terrain (30–100%) Will to fight 

Operational posture (30–150%) Weather (30–100%) Discipline 

Force ratio (70–160%) Season (65–100%) Level of training 

Intensity of operation (70–150%) 

Raid achievement (120–150%) 

Time of battle (50–100%) Combat fatigue 

<Table 2> Loss influencing factors and their effects

3.2 Overview of Beta Regression

First, as proposed by Ferrari and Cribari-Neto (2004), beta regression is a statistical method 

in which the dependent variable is based on beta distribution. Beta regression employs a link 

function to map the data in real space to the bounded interval (0.1) and then performs a 

regression on the beta distribution using maximum likelihood estimation. While beta regression 

is most readily applied to the modeling of rates and proportions provided the constrained 

interval, because of the flexibility of the underlying beta distribution, beta regression is utilized 

in a wide range of disciplines including medicine, finance and economics, and social science. 

Because the beta distribution is an extremely flexible distribution, beta regression can be useful 

for dependent variables y (0, 1), as shown in Figure 1. A beta regression model is a maximum 

likelihood derivation combining link functions, such as logit and probit, with reparametrization 

of the beta distribution. While multiple linear regression is the most widely used approach in 

modeling a variable with multiple explanatory variables when the output variable ranges 

between (-inf, inf), beta regression is particularly useful for modeling ratios because the beta 

distribution is constrained between (0, 1).
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<Figure 1> Beta densities for different parameter values 

A typical beta probability density distribution is as follows: 

                     f(y; p, q) = 



 , 0 < y < 1 (1)

where p, q > 0 and Γ(⋅) denotes the gamma distribution. These parameters can be 

transformed to μ = p / (p+q) and φ = p + q, as follows:

              f(y; μ, φ) = 



, 0 < y < 1 (2)

where 0<μ<1 and a known precision parameter φ>0. When E(y) = μ and VAR(y)=μ(1-μ)/(1+

φ), the response variable follows a beta distribution, which is denoted as y∼B(μ, φ). Given 

random variables y1,…,yn such that yi∼B(μi, φ), the beta regression is defined as follows: 

                                     
   (3)

where g(μi): (0,1) is a link function that is strictly increasing and twice differentiable; beta 

is a regression vector; an independent vector; and a linear predictor. Then,
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                                     
 (4)

is estimated using the maximum likelihood. It is assumed that the precision parameters in 

Equations (2) and (3) are identical. However, this assumption may not be applicable to many 

practical problems. Simas et al. assumed yi∼B(μi,φi) and expanded the regression model as 

follows [6].

                            
      

  (5)

where β and γ denote regression vectors; xi and zi denote independent variable vectors; and 

η1i and η2i denote linear predictor variable vectors. Such models are referred to as variable 

dispersion beta regression models.

3.3 Verification of loss factors using statistical method

Among the various loss factors in Table 2, we selected four factors, such as topography, 

operational posture, force ratio, and operational period, which were accumulated as big-data in 

GORRAM. We used beta regression to verify these factors. Table 3 lists the verification results.

Variables Estimated value
Probability of 

significance
Significance

Response variable Loss rate < 2.2 x 10 -16

Explanatory 

variable

Topography 0.04713 2.71 x 10-10

SignificantOperational posture 0.18002 8.48 x 10 -15

Force ratio 0.54572 < 2.0 x 10-16

Operational period 0.01223 0.22626 Insignificant

<Table 3> Verification results

From the regression output, three of the four loss-influencing factors were observed to be 

significant. Among the three, the force ratio, difference between the ally and opponent’s military 

force based on the power index, had the largest influence on the daily loss rate. Operational 

posture, the form of operations for the planned mission of the attacker and defender, and the 

effects of topographic characteristics and weather were also observed to be statistically 



166  선진국방연구 제5권 제2호

significant explanatory variables, while their influence on the daily loss rate was much smaller 

than that of the force ratio. The operation period (number of days) was observed to be 

statistically insignificant in terms of explaining the loss rate.

Ⅳ. CALCULATION OF REGRESSION FORMULA 

4.1 Building the database 

The simulation output is stored in GORRAM in a tabular format, with the loss of resources 

indicated by the type of personnel and equipment for each corps/division and day of battle. To 

construct the database useful for this study, the original data were organized according to the 

three variables identified as significant in predicting the loss rate, geometry, operational posture, 

and force ratio. The appropriate classifications for geometry and operational posture listed in 

Table 4 were applied based on the domain knowledge of the operational condition and function 

of each corps/division in the ROK Army. In terms of topography, it is divided into flatland, hill, 

and mountain because the loss is different depending on the place where the war takes places. 

From the same perspective, the type of operation is divided into attack, defense, fixing, and 

reserve.

Topography Operational posture  Force ratio  

Flatland Attack 1:1 

Hill Defense 2:1 

Mountain Fixing ∼

Reserve∼

<Table 4> Classification of loss influencing factors

 

We choose 5 representative weapon systems – mortar, artillery, tank, armored vehicle, 

communication – in use by the Republic of Korea Army in Table 5. Considering the geopolitical 

characteristics of the Korean Peninsula, the Republic of Korea Army should carry out both 

conventional and advanced wars at the same time. It was divided into categories for mortar 

which are crucial for infantry, artillery equipment, equipment necessary for armoured units, and 

command and control communication equipment to carry out the fight in this circumstance. 

For each of the defined groups, representative equipment was presented.
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Equipment  

Mortar 60 mm, 81 mm, 4.2”  

Artillery KH-179, K-55, K-9, M101A1  

Armored vehicle / Tank K200, K277, K288, K21 / K1, K2  

Communication P-999K, V-946K, P-964K  

<Table 5> A detailed list of equipment

 

4.2 Calculating the regression formula 

After building the database, we calculated the beta regression formula, as listed in Table 6, 

using loss-influencing factors, such as topography, operational posture, and force ratio, which 

were verified in Section 3. The variables in the regression formula are displayed as random 

numbers for military security reasons. Although not all regression formulas were included in this 

paper owing to military security concerns, we were able to achieve findings that were supported 

by activities. All standard losses for the important equipment listed in Table 6 can be predicted. 

We employed a beta regression model at the time, with the loss rate between 0 and 1.

Equipment a1 a2 a3 a0

60 mm mortar 0.00075 0.00548 -0.00419 0.00578

K-9 artillery 0.00058 0.00601 -0.00101 0.00441

K1 tank 0.00071 0.00153 -0.00712 0.01021

∼ ∼

<Table 6> Regression formula results

Ⅴ. Development of Standard Loss Analysis Model  

5.1 Development and configuration of the model 

A standard loss analysis model was developed using C#. C# is an object-oriented 

programming language developed by Microsoft that is intended to combine the computing power 

of C++ with the programming ease of Visual Basic. We chose the C# language as a development 

tool, considering processing speed and management after development. Figure 2 shows the 

standard loss analysis model. To calculate the loss of personnel and equipment, we followed 

nine steps. The user can choose unit (division or corps) and type of unit (infantry or 
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artilleryman, etc.), type of topography (flatland, hill, and mountain), type of operational posture 

(attack, defense et al), power ratio, etc. We can choose additional factors, such as the intensity 

of the operation, season, and time of operation. 

<Figure 2> The input window of the standard loss analysis model

Figure 3 shows the result window in which the loss of personnel is calculated. The model has a 

multiwindow pop-up function, and it is possible to compare the results of various operational 

situations in a very short time. This allows for a more precise prediction of the loss of various types 

of war participants, such as officers and men. We can assist prepare for war effectively by predicting 

losses from D-day to D+60 days. These numbers were blanked out for military security concerns. 

<Figure 3> The result window of the standard loss analysis model
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5.2 Verification of the standard loss analysis model 

To verify the standard loss analysis model, predictions were generated using the beta 

regression formula by varying each factor while keeping the others constant. The numbers have 

been blanked out for security reasons. For instance, in comparing the loss rate along 

topography, it was confirmed that the loss on flatland was higher than the rates on hills and 

mountains, as shown in Figure 4, while other variables were constant. 

<Figure 4> Comparison of loss rate under different types of topography

Similarly, the loss rate was higher in the simulations where the power ratio was higher, as 

shown in Figure 5. These relationships are consistent with the results of existing studies. 

However, it was feasible to estimate the loss rate more accurately in this study. This serves 

as an essential foundation for building various war preparation scenarios.

<Figure 5> Comparison of loss rate according to the force ratio
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Ⅵ. SUMMARY AND FUTURE WORKS  

To overcome the limitations of existing war-game simulations, the CAAS has conducted 

research on the standard loss analysis model. We verified the loss factors, such as topography, 

operational posture, and force ratio, using the simulation data of GORRAM using beta 

regression. Based on the verification, we calculated a regression formula to predict the loss of 

personnel and equipment. Finally, we developed a standard loss analysis model using C# and 

verified the model by comparing the results of the model with the existing studies. Throughout 

this study, we analyzed the war-time resource requirements within several hours by comparing 

1–2 weeks of the existing war-game model. Through this study, we were able to overcome the 

time limitation of the existing war-game model and improve the accuracy of the method by 

simply evaluating loss with the index of the weapon system. In addition, the output of this 

study will be used as a means of judging the expected loss by reflecting the changed operational 

environment from this joint US–ROK exercise. This model will be distributed to the Corps and 

Division for analyzing the operational plan by comparing the loss of various operational plans. 

Finally, we must update the regression formula using more recent simulation data. In addition, 

we will expand the variety of target equipment from 10–20 types to 100–120 types. After 

improving the standard loss analysis model by the end of this year, it will be used on a trial 

basis in the next ROK-US CCPT.
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