

Weapon System Software Quality

Improvement using Software Reliability

Prediction Model

Ryu In Soo*1)

(MOASOFT)

≪Abstract≫

Most software flaws that occur during the operational phase are often not identified during the

development phase. Therefore, to ensure reliability of software during the development phase is

very important. This study proposes a predictive model to improve the reliability of the weapon

system software during the development phase. Using the RADC model proposed in this study,

we calculate the predicted reliability of the software development phase for the software project

developed by M company. Experiments comparing before and after model application indicated a

significant decrease in the predictive defect density (PDD) and the predictive defect count (PDC).

The results of the experiment showed that we could reduce the burden on the operational phase

by minimizing the failure in the software development phase.

Keywords : Software Reliability, Software Quality, Prediction Model, RADC Model

* isryu@moasoftware.co.kr

선진국방연구
Journal of Advances in Military Studies
2018, Vol. 1, No. 2, 1-12.

2 선진국방연구 제1권 제2호

Ⅰ. Introduction

The aspect of the future ware will change to NCE (Network Centric Warfare), in order to

implement the concept of joint battlefield operation, weapon systems such as surveillance,

reconnaissance, command control and communication will be connected to a network. With the

development of the fourth industrial revolution, IOT, Big data, Unmanned, and Automation

technologies will make accelerate the development of the weapon system for NCE operations.

The technologies associated with the fourth industrial revolution have been applying to weapons

systems and it will be an essential of the future defense industry.

The importance of software system reliability is emphasized by increasing the proportion of

software in the weapon system. The quality of the software requires an effort to ensure a

quality of the process and the product perspective. For the purpose, software developers and

organizations are trying to improve software quality through a variety of improvement with the

capability maturity models. However, most of the software failures that occur during the

operational phase is caused by a lack of identification in the development phase. Thus,

systematic software quality management is required from the development phase to minimize

the costs of defects correction and the burden in the operational phase. This study proposes the

predictive model to improve the software reliability during the development phase and the

applicability of the model proposed is evaluated using the comparison test before and after the

model application through the case study.

Ⅱ. Literature Review

2.1 Review on the software quality assessments

John D. Musa emphasizes in his book ‘Software reliability Engineering more reliable software

faster and cheaper(2nd Edition).’ the use of software reliability for software quality

measurement as follows. “Software reliability engineering is integrally connected and is, in fact,

a keystone to total quality management. It is a keystone in the sense that you cannot manage

quality without a user-oriented metric of system reliability, and you cannot determine the

reliability of software-based systems without a software reliability measure (Musa, 2004).”

The main content mentioned about software quality assurance in ROK DAPA’s ‘WSS

Development and Management manual’ is follow.

Weapon System Software Quality Improvement using Software Reliability Prediction Model / Ryu In Soo 3

The quality assurance of WSS is an activity to ensure that the process applied to the

software deliverable project complies with the quality requirements specified in the contract and

complies with the pre-promised plan. WSS quality assurance is activities that software output

and development process adhere to the quality requirements stated in the contract and activities

to ensure compliance with the plan. This is divided into output assurance, process assurance

and is performed through a review meeting, verification, validation, audit, etc. The software

quality assurance methodology is conducted through software review meeting to ensure that the

quality goals of the product and process are met, and the project management review meetings

and technical review meetings (DAPA, 2017).

The WSS development and management manual focuses on the standards compliance and the

quality of the output document during software development. In other words, qualitative quality

control is mainly active. Quantitative quality control activities are needed from the beginning of

development.

The software engineering body of knowledge describes the general knowledge of the field of

software engineering. Each area of knowledge includes a list of basic concepts. There are 15

areas of knowledge, including software requirements, design, implementation, testing,

engineering processes, engineering models and methodologies, and software quality is described

in the tenth part. The Software Quality Measurement (SQM) is used to support decision

making. It improves software quality in a variety of ways and is a useful method in the

decision-making process. Software quality is an important factor in how well the quality goals

are achieved beyond the behavior of the software (Abran, Moore, Bourque, Dupuis, & Tripp,

2004).

The SQM report provides valuable information in the entire software lifecycle process as well

as the development process. Quality measurement uses the following techniques.

Statistically based techniques and statistical tests: Statistical-based techniques and statistical

tests enable identification of more problematic parts in a software product (Abran et al., 2004).

Trend analysis: Charts and graphs of trend analysis help decision makers to make decisions

about resource allocation.

Reliability models: Prediction technology using the reliability prediction model is useful to

estimate the effort and time required for the test or to predict the failure or change in the

software.

4 선진국방연구 제1권 제2호

2.2 Review on the software reliability prediction

2.2.1 Software Reliability Evaluation model classification

The models for Software Reliability growth management are undergoing a lot of research,

and they are mathematical models for measuring the reliability of software in specific operating

environments.

Before software testing, predicting reliability by considering the development environment of

the software to be developed is a reliability prediction model.

Initial reliability predictive models include Rome Lab, COQUALMO, which analyze based on

characteristics of products, process-based models such as CMMI, and software architecture-

based models that take into account organizational software development capabilities.

2.2.2 Reliability prediction model

The prediction model predicts the reliability from the requirements analysis phase to the

software implementation phase and aims at the reliability growth of the software developed

through the prediction. The results obtained by the reliability prediction model are the predicted

defect density and the predicted defect count. These values represent the degree of integrity of

the software.

The Rome Laboratory Prediction Model based on the RL-TR-92-52 standard is an RADC

model (Friedman, 1992). This model is designed to predict software reliability of the US

Air-Force Computer System, and It includes quantitative measures for developing reliable

software during the software development process. Also, it is defined that it is possible to

predict software reliability for each development phase. Each phase of development is based on

the Defense Department’s ‘MIL-STD-2167A, Defense System Software Development’.

The Rome Lab Model can predict the initial defect density and current reliability, based on

data collected from the software development environment, experience, and activities of the

development process.

Therefore, the Rome Lab Model is classified as a model based on the product characteristics

among the software reliability model classifications. The reliability calculation of this model

shows the defect density per LOC(Lines of Code). That is, to predict the initial number of

defects, it is possible to calculate the defect density.

Weapon System Software Quality Improvement using Software Reliability Prediction Model / Ryu In Soo 5

In the previous research, only the result of calculating the software reliability was presented,

but this paper additionally suggested the software reliability improvement activity.

Ⅲ. Quality Improvement Method on the Software Development

Phase

3.1 Software reliability prediction process

The model used in this paper for predicting the reliability of the WSS are the RADC

(RL-TR-92-15) model (Friedman, 1992). The process of predicting and improving software

reliability activities are shown in figure 1.

<Figure 1> Software reliability prediction and reliability improvement

process

3.2 Reliability prediction using RADC model

This model calculates software defect density for each development phase and predicts the

number of defects based on reliable quantitative measures in the software development process

(IEEE, 2017; Ryu & Jeong, 2018). The software defect density and the number of defects can

be predicted from the early phase of software development as shown in figure 2.

Concept/Planning Phase defect density calculation is A*D. A factor reflects the characteristics

of the Application. For example, the application type is airborne, the A Factor value is 0.0128,

6 선진국방연구 제1권 제2호

and the tactical is 0.0078. Thus, it is proposed to quantify the average defect density according

to the Application type (Friedman, 1992). D factor is calculated based on a checklist of the

characteristics of the current system development Organization and the development

environment of the system. The calculation elements are organizational considerations 8,

Methods used 9, Documentation 12, Tools Used 9, Test techniques Planned have 6 elements to

predict the defect density and number of defects.

SW requirements and design phase reflect the characteristics of the software requirements

analysis and design process to predict defect density and defect count.

<Figure 2> RADC Model Process

The defect density calculation of this step is shown as below.

Defect Density = A*D*S1 (S1: SA (Anomaly Management) * ST(Traceability)* SQ (Quality

Review))

The SA(Anomaly Management) checks the requirements specification and design

documentation to determine whether there is a countermeasure for error and exception handling.

ST(Traceability) identifies the mapping relationship from the system requirements

specification in the system analysis phase to the detailed design specification.

The SQ(Quality Review) is based on a checklist of quality review activities and faults

identified in the review activities found in each review phase.

Weapon System Software Quality Improvement using Software Reliability Prediction Model / Ryu In Soo 7

The implementation phase calculates defect density by reflecting the software characteristics

of the software implementation process. The defect density calculation of this step is shown

below[5].

Defect Density = A*D*S1*S2 (S2: SL (Language Type) * SS(Program Size) *

SM(Modularity) * SU(Extent of Reuse) * SX(Complexity) * SR(Standard Review))

SL(Language Type) is a classification according to the type of software implementation.

SS(Program Size) is the dimensions of the programs. SM(modularity) is a measure for

determining the readability and understanding of the module based on the size of the

implementation module. SU(Extent of Reuse) is the ratio of the reusable code. SX(complexity)

uses the Cyclomatic complexity as a measure to determine the structural complexity of the

implemented module. Standard Review. The SR(Standard Review) is a measure of compliance

with standards during implementation.

3.3 Case study on the RADC Model

Using the RADC model, I calculate the predicted reliability of the software development stage

for the software project developed by M company. I identified the need for software reliability

improvement at the development phase and applied complementary activities.

3.3.1 Concept and planning phase

According to the above table 1, the first prediction defect density measurement results of this

step are as follows.

PDD (Predictive Defect Density) = A*D

PDD: 0.0246 = 0.0123*2

After the reliability improvement activities defect density is as follows.

PDD: 0.00615=0.0123*0.5

8 선진국방연구 제1권 제2호

Input Data

Factor Value
Reliability Improvement

ActivitiesInitial

Measurement

Measurement after

improvement

System type -Application Type 0.0123 0.0123

Development

environment
-Organizational
 Considerations

-Methods Used

-Documentation

-Tools Used
-Test Techniques
 Planned

2 0.5

2 Yes items Increased

-Using the Configuration

 Management Tool

-Add a quality assurance

 plan

<Table 1> Concept phase defects density

3.3.2 Requirement and Design Phase

Input Data

Factor Value
Reliability Improvement

ActivitiesInitial

Measurement

Measurement after

improvement

System type -Application Type 0.0123 0.0123

Development

environment

-Organizational
 Considerations

-Methods Used

-Documentation

-Tools Used
-Test Techniques
Planned

0.5 0.5

Anomaly

management

-Action for Error
Condition

- Identification and
 recovery of

 calculation/

 operating failures

1.0 0.9

-Add final validation

checks

for output data, etc.

=>4 Yes items Increased

yes

Traceability

-Traceability of
 requirements and

 designs

1.1 1
Traceability

80% => 95% Increased

Quality

Review

-Quality review

 activities

-Found Quality
 Defects

1.1 1

-Define inputs, processing,

and output. etc.

=>5 Yes items Increased

yes

<Table 2> Requirement and Design Phase Concept phase defects density

Weapon System Software Quality Improvement using Software Reliability Prediction Model / Ryu In Soo 9

According to the above table 2, the first prediction defect density measurement results of this

step are as follows.

PDD (Predictive Defect Density) = A*D*(SA*ST*SQ)

PDD: 0.0223245 = 0.0123*0.5*(1.0*1.1*1.1)

After the reliability improvement Activities defect density is as follows.

PDD: 0.005535 = 0.0123*0.5*(0.9*1*1)

Because the number of source code lines in this step is unknown, the number of predictive

defects can be calculated in the implementation phase.

3.3.3 Implementation Phase

Input Data

Factor Value
Reliability Improvement

Activities
Initial

Measurement

After

improvement

System type Application Type 0.0123 0.0123

Development

environment
-Organizational Considerations
-Methods Used

-Documentation

-Tools Used
-Test Techniques Planned

0.5 0.5

Anomaly

management
-Action for Error Condition
- Identification and recovery of
 calculation /operating failures

0.9 0.9

Traceability -Traceability of requirements

 and designs

1 1

Quality

Review
-Quality review activities

-Found Quality Defects
1 1

language

Type
-Assembly Language code line

-Higher Order Language code
 line

1 1 No improvement needs

Program size -Source Code Line 2 2 No improvement needs

Modularity -CSCI Unit Modularity 1.21053 0.9120623 SM<200LOC module

increase (8)

Reusability -Extent of reuse 0.1 0.1 No improvement needs

Complexity -Cyclomatic Complexity 0.9155642 0.67 SX>=20 module

decrease (10)

Standard

review
-Software standard review 1.5 0.75 Modules With problems

decrease (10)

<Table 3> Implementation phase defects density

10 선진국방연구 제1권 제2호

According to the above table 3, the first prediction defect density measurement results of this

step are as follows.

PDD (Predictive Defect Density) = A*D*SA*ST*SQ*(SL*SS*SM*SU*SX*SR)

PDD: 0.00184=0.0123* 2* 1* 1.1* 1.1*(1* 2* 1.21053* 0.1* 0.9155642* 1.5)

Predictive Defect Count (PDC) = Defect Density * Source Lines of Code

PDC: 64.78 = 0.009897057*35,200

After the reliability improvement Activities defect density is as follows.

PDD: 0.000507= 0.0123* 0.5* 0.9* 1* 1* (1* 2* 0.9120623* 0.1* 0.67* 0.75)

PDC: 17.86 = 0.000507*35,200

The RADC model measures defect density by development phase. Defect density was reduced

after identifying and improving reliability factors based on the measurement of defect density.

The more these activities are strengthened in the development phase, the fewer defects that

move into the testing phase.

The systematic reliability improvement activities in the requirements analysis phase, design

phase, and implementation phase can result in a reduction in the test period and personal input.

Ⅳ. Analysis of Effectiveness

By using the prediction model to calculate defect density and defect counts, improve reliability

in the development phase, I reduced the number of defects from 216.48 to 17.86, as shown in

table 4. The software test time is expected to reduce due to the reduction in the number of

defects. Therefore, Reliability improvement activities should be performed.

Concept Phase
Requirement and Design

Phase
Implementation Phase

Defect Density 0.00615 0.005535 0.000507

Defect Counts 216.48 195.01 17.86

SLOC (35,200) (35,200) 35,200

<Table 4> RADC model software quality improvement activity result

Using the LDRA tool, measurements of quality metrics of the project that applied prediction

model(Figure 4).

Weapon System Software Quality Improvement using Software Reliability Prediction Model / Ryu In Soo 11

By comparing the quality metrics of the project, I can see that the quality metrics of the

project with the quality metrics are very well. The software quality of projects that manage

software quality using prediction models that calculate defect density and number of defects is

excellent.

<Figure 4> Results of Prediction model applied Projects

Ⅴ. Conclusion

I research how to predict software reliability using the RADC model at the software reliability

prediction step and suggest reliability improvement activities at software development phase. I

measured the software quality on the project, the quality of the project that applied the method

presented in this paper was measured well. It can be improved the quality of software by

minimizing potential defects at the phase of software development. I think that this research will

contribute to software quality improvement of a weapon systems.

12 선진국방연구 제1권 제2호

Abran, A., Moore, J. W., Bourque, P., Dupuis, R., & Tripp, L. L. (2004). Guide to the software

engineering body of knowledge: 2004 version SWEBOK. IEEE Computer Society.

Defense Acquisition Program Administration (DAPA) (2017). Weapon System Software

Development and Management Manual. DAPA.

Friedman, M. (1992). Methodology for Software Reliability Prediction and Assessment. Report

RL-TR-92-52, Rome Laboratory 1992 (2 volumes).

IEEE (2017). Recommended Practice on Software Reliability. IEEE Std 1633™-2016 (Revision of

IEEE Std 1633-2008).

Musa, J. D. (2004). Software reliability engineering: more reliable software, faster and cheaper.

Tata McGraw-Hill Education.

Ryu, I. S., & Jeong, S. J. (2018, May). A Study on the Weapon System Software Reliability

Prediction and Estimation Process at the Software Development Phase. In International

Conference on Computational Science and Its Applications (pp. 205-217). Springer, Cham.

References

원 고 접 수 일 2018년 11월 28일

원 고 수 정 일 2018년 12월 26일

게 재 확 정 일 2018년 12월 28일

