Development of a lifetime evaluation system and lifetime prediction method for GaN RF semiconductors used in manned and unmanned weapon systems
DOI:
https://doi.org/10.37944/jams.v6i2.208Keywords:
GaN semiconductor reliability, lifetime estimation, degradation mechanism, accelerated life testAbstract
The aim of this study is to develop a testing system that applies RF (Radio Frequency) stress to predict the lifespan of GaN RF semiconductors, a subject of numerous ongoing domestication studies. Additionally, the study proposes an approach that considers the complex effects of degradation mechanisms in predicting lifespan. When testing the longevity of communication semiconductors, it’s essential to apply RF-input to replicate real-world conditions. The system we developed applies wideband, high power RF stress to individual samples. It monitors RF characteristic changes in real-time and provides independent control of temperature and voltage stress for each sample. This ensures both effective lifespan tests and real-time tracking of semiconductor degradation patterns. Unlike traditional GaAs semiconductors, GaN ones exhibit the compounded influence of degradation mechanisms during RF operation. Therefore, a new lifespan estimation method that identifies the IV characteristic parameters for each degradation mechanism and deduces a relationship between the DC-accelerated life test and the RF-accelerated life test was proposed. The proposed method is significant in that it provides foundational data necessary for the systematic planning of semiconductor reliability testing and the direction of test equipment development. If lifespan tests proceed using this proposed method and data related to degradation mechanisms is derived, it is anticipated to positively impact the future reliability improvement of GaN RF semiconductors.
Metrics
References
Ahn, H. B., Ji, H. G., Kang, D. M., & Han, J. H. (2022). Design of GaN Low Noise Amplifier MMIC for 28 GHz Band 5G FR2 Communication for Base Station. Journal of the Institute of Electronics and Information Engineers, 59(5), 77-82. https://doi.org/10.5573/ieie.2022.59.5.77
Automotive Electronics Council (2007). Standard AEC - Q100 – REV-G: FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR INTEGRATED CIRCUITS. Retrieved from http://www.aecouncil.com/Documents/AEC_Q100_Rev_G_ Base_Document.pdf
Burnham, S. D., & Paine, B. M. (2017, May). Towards an RF GaN reliability standard. In Proceedings of the JEDEC Reliability of Compound Semiconductors Workshop, Indian Wells, CA, USA (Vol. 22). Retrieved from https://www.researchgate.net/profile/Bruce-Paine/publication/322702351_Towards_an_RF_GaN_Reliability_Standard/links/5a6a514f458515b2d0532910/Towards-an-RF-GaN-Reliability-Standard.pdf
Chowdhury, U., Jimenez, J. L., Lee, C., Beam, E., Saunier, P., Balistreri, T., ... & Del Alamo, J. A. (2008). TEM observation of crack-and pit-shaped defects in electrically degraded GaN HEMTs. IEEE Electron Device Letters, 29(10), 1098-1100. https://doi.org/10.1109/LED.2008.2003073
del Alamo, J. A., & Joh, J. (2009). GaN HEMT reliability. Microelectronics Reliability, 49(9-11), 1200-1206. https://doi.org/10.1016/j.microrel.2009.07.003
Department of Defense (1995). MIL-STD-750D: Test Methods for Semiconductor Devices. Retrieved from https://www.navsea.navy.mil/Portals/103/Documents/NSWC_Crane/SD-18/Test%20Methods/MILSTD750.pdf
Han, S. H., Sung, H. W., & Kim, D. W. (2022, October, 20-22). Design and Fabrication of Ku-band GaN Low Noise Amplifier MMIC. [Paper Conference]. Fall conference 2022 of Society of Electrophysics and Application, Gangneung, Korea. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11205086
Jang, Y. (2022). A Study on the Military Application of the Futuristic Unmanned Autonomous Weapon System. Korea Journal of Military Affairs, 11, 135-155. https://doi.org/10.33528/kjma.2022.6.11.135
JDEDC (2010). JESD22-A108D: Temperature, Bias and Operating Life. Retrieved from https://www.jedec.org/sites/default/files/docs/22A108D.pdf
JEDEC (2013a). JEP118-A: Guidelines for GaAs MMIC PHEMT/MESFET and HBT Reliability Accelerated Life Testing. Retrieved from https://www.jedec.org/standards-documents/docs/jep-118
JEDEC (2013b). Standard JESD226: RF Biased Life Test Method. Retrieved from https://www.jedec.org/sites/default/files/docs/JESD226.pdf
Joh, J., & del Alamo, J. A. (2010, December). RF power degradation of GaN high electron mobility transistors. In 2010 International Electron Devices Meeting (pp. 20-25). IEEE. https://doi.org/10.1109/IEDM.2010.5703397
Kim, J. S., & Son, H. G. (2022). A Study on Methods to Improve The reliability of The Search Radar Semiconductor Transceiver Assembly. Journal of Korea Academia-Industrial cooperation Society, 23(7), 457-465. https://doi.org/10.5762/KAIS.2022.23.7.457
Lee, S. H., Kim, Y. H., & Park, Y. J. (2022, June, 29 to July 1). Development of 10W GaN Power Amplifier MMIC in Ka Band. [Paper Conference]. Summer conference 2022 of The Institute of Electronics and Information Engineers. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11132419
Lee, Y. H., Kim, J. Y., Moon, K. S., & Lee, K. S. (2021). A Study on Stockpile Reliability Program for Effective Life Cycle Management of Domestically Developed Missile. Journal of the Korea Association of Defense Industry Studies, 28(1), 81-91. https://doi.org/10.52798/KADIS.2021.28.1.7
Lim, B. O., Go, J. S., Ryu, K. K., & Kim, S. C. (2022). A X-band 40W AlGaN/GaN Power Amplifier MMIC for Radar Applications. Journal of IKEEE, 26(4), 722-727. https://doi.org/10.7471/ikeee.2022.26.4.722
Meeker, W. Q., & Hahn, G. J. (1985). How to plan an accelerated life test: Some practical guidelines. ASQC Statistics Division.
Meneghesso, G., Meneghini, M., Tazzoli, A., Stocco, A., Chini, A., & Zanoni, E. (2010). Reliability issues of gallium nitride high electron mobility transistors. International Journal of Microwave and Wireless Technologies, 2(1), 39-50. https://doi.org/https://doi.org/10.1017/S1759078710000097
Meneghesso, G., Verzellesi, G., Danesin, F., Rampazzo, F., Zanon, F., Tazzoli, A., ... & Zanoni, E. (2008). Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Transactions on Device and Materials Reliability, 8(2), 332-343. https://doi.org/10.1109/TDMR.2008.923743
Nakkala, P. (2015). Pulsed IV and RF characterization and modeling of AIGaN HEMTs and Graphene FETs. [Doctoral dissertation, Université de Limoges]. Retrieved from https://theses.hal.science/tel-01175525/
Noh, Y. S., Kim, S. I., Lee, S. H., Ahn, H. K., & Lim, J. W. (2022. November, 16-18). A Study on the X band GaN Single-chip Transceiver MMIC Design. [Paper Conference]. Fall conference 2022 of Korean Institute of Communications and Information Sciences, Gyeongju, Korea. Retrieved from https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE 11197331
Paine, B. M. (2015). Scaling DC lifetests on GaN HEMT to RF conditions. Microelectronics Reliability, 55(12), 2499-2504. https://doi.org/10.1016/j.microrel.2015.09.024
Paine, B. M., Ng, V. T., Polmanter, S. R., Kubota, N. T., & Ignacio, C. R. (2015c, April). Degradation rate for surface pitting in GaN HEMT. In 2015 IEEE International Reliability Physics Symposium (pp. CD-1). IEEE. https://doi.org/10.1109/IRPS.2015. 7112786
Paine, B. M., Polmanter, S. R., Ng, V. T., Kubota, N. T., & Ignacio, C. R. (2015a). GaN HEMT lifetesting– characterizing diverse mechanisms. In Proceedings of the International Conference on Compound Semiconductor Manufacturing Technology. 321-324. Retrieved from https://www.researchgate.net/profile/Bruce-Paine/publication/313207825_GaN_HEMT_
Lifetesting_-_Characterizing_Diverse_Mechanisms/links/589282bea6fdcc1b4146c45a/GaNHEMT-Lifetesting-Characterizing-Diverse-Mechanisms.pdf
Paine, B. M., Polmanter, S. R., Ng, V. T., Kubota, N. T., & Ignacio, C. R. (2015b). Lifetesting GaN HEMTs with multiple degradation mechanisms. IEEE Transactions on Device and Materials Reliability, 15(4), 486-494. https://doi.org/10.1109/TDMR.2015.2474359
Stocco, A. (2012). Reliability and failure mechanisms of GaN HEMT devices suitable for high-frequency and high-power applications. [Doctoral dissertation, Università degli Studi di Padova]. Retrieved from https://www.research.unipd.it/retrieve/e14fb26f-af90-3de1-e053-1705fe0ac030/AntonioStocco_PhD_thesis.pdf
Sung, H. W., Han, S. H., Kim, S. I., Ahn, H. K., Kim, J. W., & Kim, D. W. (2022a). X-Band GaN Monolithic Microwave Integrated Circuit Low Noise Amplifier Using Inductive Source Degeneration. The Journal Of Korean Institute of Electromagnetic Engineering and Science, 33(5), 356-364. https://doi.org/10.5515/KJKIEES.2022.33.5.356
Sung, H. W., Han, S. H., Kim, S. I., Ahn, H. K., Lim, J. W., & Kim, D. W. (2022b). C-Band GaN Dual-Feedback Low-Noise Amplifier MMIC with High-Input Power Robustness. Journal of Electromagnetic Engineering and Science, 22(6), 678-685. https://doi.org/10.26866/jees.2022.6.r.137
Via, G. D. (2014). GaN Reliability– Where we are and where we need to go. CS ManTech, 15-18. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9933aa5d89dd56ec0ad8ae29caeba94f73fc41a8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Advances in Military Studies
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
이 저작물은 크리에이티브 커먼즈 저작자표시 4.0 국제 라이선스에 따라 이용할 수 있습니다.
Funding data
-
Ministry of Science and ICT, South Korea
Grant numbers 20015696